

Solve each problem.

- A restaurant took $\frac{1}{2}$ of an hour to use $\frac{1}{3}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
- A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
- Paige spent $\frac{1}{2}$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?
- 4) A discount bottle of perfume was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?
- A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
- A carpenter used $\frac{1}{2}$ of a box of nails while working on a birdhouse and was able to finish $\frac{1}{3}$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
- A small can of paint was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
- 8) A pencil making machine took $\frac{1}{2}$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box?
- Ocarol was using a container to fill up a fishbowl. The container held $\frac{1}{2}$ of a gallon of water and filled $\frac{1}{3}$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
- A container of gasoline that held $\frac{1}{2}$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?

Answers

1. _____

2

3. _____

4.

5. _____

6. _____

7. _____

8. _____

9. _____

10. _____

Solve each problem.

- A restaurant took $\frac{1}{2}$ of an hour to use $\frac{1}{3}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
- A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
- Paige spent $\frac{1}{2}$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?
- A discount bottle of perfume was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?
- A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
- A carpenter used $\frac{1}{2}$ of a box of nails while working on a birdhouse and was able to finish $\frac{1}{3}$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
- A small can of paint was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
- A pencil making machine took $\frac{1}{2}$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box?
- Carol was using a container to fill up a fishbowl. The container held $\frac{1}{2}$ of a gallon of water and filled $\frac{1}{3}$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
- A container of gasoline that held $\frac{1}{2}$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?

- $1\frac{1}{2}$ hours
- $1\frac{1}{2}$ hours
- $1\frac{1}{2}$ hours
- 3 bottles
- $1\frac{1}{2}$ hours
- $1\frac{1}{2}$ boxes
- 3 cans
- $_{8.}$ 1 $\frac{1}{2}$ seconds
- **3 containers**
- 10. 3 containers