Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathbf{k x}$

Ex)

Tickets Sold (x)	2	9	5	10	6
Money Earned (y)	26	117	65	130	78

Every ticket sold _13_ dollars are earned.
1)

Cans of Paint (x)	4	5	7	8	6
Bird Houses Painted (y)	16	20	28	32	24

For every can of paint you could paint \qquad bird houses.
2)

Boxes of Candy (x)	7	5	2	10	6
Pieces of Candy (y)	126	90	36	180	108

For every box of candy you get \qquad pieces.
3)

Lawns Mowed (x)	4	8	6	9	7
Dollars Earned (y)	168	336	252	378	294

For every lawn mowed \qquad dollars were earned.
4)

Glasses of Lemonade (x)	6	3	7	9	2
Lemons Used (y)	18	9	21	27	6

For every glass of lemonade there were \qquad lemons used.
5)

Chocolate Bars (x)	10	2	6	4	8
Calories (y)	3,300	660	1,980	1,320	2,640

Every chocolate bar has \qquad calories.
6)

Time in minute (x)	7	2	8	10	3
Distance traveled in meters (\mathbf{y})	77	22	88	110	33

Every minute \qquad meters are travelled.
7)

Concrete Blocks (x)	6	7	4	8	5
weight in kilograms (y)	60	70	40	80	50

Every concrete block weighs \qquad kilograms.
8)

Pounds of Beef Jerky (x)	5	8	9	7	2
Price in dollars (y)	55	88	99	77	22

For every pound of beef jerky it cost \qquad dollars.

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad五

Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathbf{k x}$

Ex)

Tickets Sold (x)	2	9	5	10	6
Money Earned (y)	26	117	65	130	78

Every ticket sold __13_ dollars are earned.
1)

Cans of Paint (x)	4	5	7	8	6
Bird Houses Painted (y)	16	20	28	32	24

For every can of paint you could paint __ $4 \quad$ bird houses.
2)

Boxes of Candy (x)	7	5	2	10	6
Pieces of Candy (y)	126	90	36	180	108

For every box of candy you get _18_ pieces.
3)

Lawns Mowed (x)	4	8	6	9	7
Dollars Earned (y)	168	336	252	378	294

For every lawn mowed _ 42 dollars were earned.
4)

Glasses of Lemonade (x)	6	3	7	9	2
Lemons Used (y)	18	9	21	27	6

For every glass of lemonade there were _3_ lemons used.
5)

Chocolate Bars (x)	10	2	6	4	8
Calories (y)	3,300	660	1,980	1,320	2,640

Every chocolate bar has 330 calories.
6)

Time in minute (x)	7	2	8	10	3
Distance traveled in meters (\mathbf{y})	77	22	88	110	33

Every minute $\quad 11$ meters are travelled.
7)

Concrete Blocks (x)	6	7	4	8	5
weight in kilograms (y)	60	70	40	80	50

Every concrete block weighs __10__ kilograms.
8)

Pounds of Beef Jerky (x)	5	8	9	7	2
Price in dollars (y)	55	88	99	77	22

For every pound of beef jerky it cost _ 11 dollars.
6)

Answers

Ex. $\quad \mathbf{y}=13 \mathbf{x}$

1. $\quad \mathbf{y}=4 \mathrm{x}$
2. $\mathbf{y}=18 \mathbf{x}$
3. $y=42 x$
4.

$$
y=3 x
$$

5. $\mathbf{y}=\mathbf{3 3 0 x}$
6. $\quad \mathbf{y}=11 \mathbf{x}$
7. $\mathbf{y}=10 \mathrm{x}$
8. $\mathbf{y}=11 \mathbf{x}$
