Solve each problem.

1) Emily needed a piece of string to be exactly $3 / 5$ feet long. If the string she has is $2 \frac{1}{4}$ times as long as it should be, how long is the string?
2) A single box of thumb tacks weighed $3 / 3$ ounces. If a teacher had $3 / 5$ boxes, how much would their combined weight be?
3) A bottle of home-made cleaning solution took $1 \frac{2}{4}$ milliliters of lemon juice. If Bianca wanted to make $2 \frac{1}{2}$ bottles, how many milliliters of lemon juice would she need?
4) A doctor told his patient to drink 3 full cups and $2 / 5$ of a cup of medicine over a week. If each full cup was $2 \frac{3}{4}$ pints, how much is he going to drink over the week?
5) Ned had a lump of silly putty that was $2 \frac{2}{3}$ inches long. If he stretched it out to $2 \frac{2}{5}$ times its current length how long would it be?
6) A package of paper weighs $1 \frac{3}{5}$ ounces. If Jerry put $2 \frac{1}{2}$ packages of paper on a scale, how much would they weigh?
7) A batch of chicken required $1 \frac{2}{4}$ cups of flour. If a fast food restaurant was making $21 / 4$ batches, how much flour would they need?
8) A new washing machine used $1 \frac{1}{2}$ gallons of water per full load to clean clothes. If George washed $2 \frac{1}{4}$ loads of clothes, how many gallons of water would be used?
9) A bag of strawberry candy takes $3 / 2$ ounces of strawberries to make. If you have $2 \frac{1}{2}$ bags, how many ounces of strawberries did it take to make them?
10) Paige can read $3 \frac{2}{3}$ pages of a book in a minute. If she read for $2 \frac{2}{3}$ minutes, how much would she have read?
11) A bottle of sugar syrup soda had $3 \frac{1}{2}$ grams of sugar in it. If Sam drank 3 full bottles and $1 / 2$ of a bottle, how many grams of sugar did he drink?
12) Lana had 3 full cement blocks and one that was $4 / 5$ the normal size. If each full block weighed $2 \frac{1}{4}$ pounds, what is the weight of the blocks Lana has?
1. 
2. $\qquad$
3. $\qquad$
4. $\qquad$
5. $\qquad$
6. $\qquad$
7. $\qquad$
8. $\qquad$
9. $\qquad$
10. $\qquad$
11. $\qquad$
12. $\qquad$

## Solve each problem.

Answers

1) Emily needed a piece of string to be exactly $3 / 5$ feet long. If the string she has is $2 \frac{1}{4}$ times as long as it should be, how long is the string?
2) A single box of thumb tacks weighed $3 / 3$ ounces. If a teacher had $3 / 5$ boxes, how much would their combined weight be?
3) A bottle of home-made cleaning solution took $1 \frac{2}{4}$ milliliters of lemon juice. If Bianca wanted to make $2 \frac{1}{2}$ bottles, how many milliliters of lemon juice would she need?
4) A doctor told his patient to drink 3 full cups and $2 / 5$ of a cup of medicine over a week. If each full cup was $2 \frac{3}{4}$ pints, how much is he going to drink over the week?
5) Ned had a lump of silly putty that was $2 \frac{2}{3}$ inches long. If he stretched it out to $2 \frac{2}{5}$ times its current length how long would it be?
6) A package of paper weighs $1 \frac{3}{5}$ ounces. If Jerry put $2 \frac{1}{2}$ packages of paper on a scale, how much would they weigh?
7) A batch of chicken required $1 \frac{2}{4}$ cups of flour. If a fast food restaurant was making $21 / 4$ batches, how much flour would they need?
8) A new washing machine used $1 \frac{1}{2}$ gallons of water per full load to clean clothes. If George washed $2 \frac{1}{4}$ loads of clothes, how many gallons of water would be used?
9) A bag of strawberry candy takes $3 \frac{1}{2}$ ounces of strawberries to make. If you have $2 \frac{1}{2}$ bags, how many ounces of strawberries did it take to make them?
10) Paige can read $3 \frac{2}{3}$ pages of a book in a minute. If she read for $2 \frac{2}{3}$ minutes, how much would she have read?
11) A bottle of sugar syrup soda had $3 \frac{1}{2}$ grams of sugar in it. If Sam drank 3 full bottles and $1 / 2$ of a bottle, how many grams of sugar did he drink?
12) Lana had 3 full cement blocks and one that was $4 / 5$ the normal size. If each full block weighed $2 \frac{1}{4}$ pounds, what is the weight of the blocks Lana has?
1. $7^{13} / 20$
2. $\qquad$
3. $\qquad$
4. 

$9^{7} / 20$
5. $\qquad$
6. $\qquad$
7. $\qquad$
8. $\qquad$
9. $\qquad$
10. $\qquad$
11. $\qquad$
12. $\qquad$

## Solve each problem.

| $13^{14} / 15$ | $7^{13} / 20$ | $3 / 8$ | $9^{7} / 9$ | $8^{3} / 4$ |
| :---: | :---: | :---: | :---: | :---: |
| $3 / 16$ | $9^{7} / 20$ | $6 / 15$ | $4 / 10$ | $3^{3} / 8$ |

1) Emily needed a piece of string to be exactly $3 / 5$ feet long. If the string she has is $2 \frac{1}{4}$ times as long as it should be, how long is the string?
2) A single box of thumb tacks weighed $3 / 3$ ounces. If a teacher had $3 / 5$ boxes, how much would their combined weight be?
3) A bottle of home-made cleaning solution took $1 \frac{2}{4}$ milliliters of lemon juice. If Bianca wanted to make $2 \frac{1}{2}$ bottles, how many milliliters of lemon juice would she need?
4) A doctor told his patient to drink 3 full cups and $2 / 5$ of a cup of medicine over a week. If each full cup was $2 \frac{3}{4}$ pints, how much is he going to drink over the week?
5) Ned had a lump of silly putty that was $2 \frac{2}{3}$ inches long. If he stretched it out to $2 \frac{2}{5}$ times its current length how long would it be?
6) A package of paper weighs $1 \frac{3}{5}$ ounces. If Jerry put $2 \frac{1}{2}$ packages of paper on a scale, how much would they weigh?
7) A batch of chicken required $1 \frac{2}{4}$ cups of flour. If a fast food restaurant was making $21 / 4$ batches, how much flour would they need?
8) A new washing machine used $1 \frac{1}{2}$ gallons of water per full load to clean clothes. If George washed $2 \frac{1}{4}$ loads of clothes, how many gallons of water would be used?
9) A bag of strawberry candy takes $3 \frac{1}{2}$ ounces of strawberries to make. If you have $2 \frac{1}{2}$ bags, how many ounces of strawberries did it take to make them?
10) Paige can read $3 / 3$ pages of a book in a minute. If she read for $2 \frac{2}{3}$ minutes, how much would she have read?
2. $\qquad$
3. $\qquad$
4. $\qquad$
5. $\qquad$
6. $\qquad$
7. $\qquad$
8. $\qquad$
9. $\qquad$
10. $\qquad$
